多くの企業が、データ分析/データ活用に期待するものの、残念ながらデータ分析への取り組みでは、まだまだ失敗事例も多い。多くの原因は、データ分析の目的やゴールをきちんと検討しないまま、データ分析作業を進めてしまうことにある。特に製造業においては、そのビジネスの展開領域が幅広いだけに、何の業務を対象に、どのような分析を実施すべきかを事前に、十分に検討する必要がある。
- > 前へ
- 1
- 2
- データ分析が導く自動化から業務改革、そしてサービス化へ:第5回(2015/09/08)
- 【第4回】速度重視型データ分析の対象は人の行動や感情(2015/08/11)
- 【第3回】精度追求型データ分析における分析モデルの構築・改善と業務活用(2015/07/14)
- 【第2回】精度追求型データ分析における分析テーマの作成(2015/06/09)
製造 / アナリティクス / BI / 日鉄ソリューションズ
-
AI時代の“基幹インフラ”へ──NEC・NOT A HOTEL・DeNAが語るZoomを核にしたコミュニケーション変革とAI活用法
-
加速するZoomの進化、エージェント型AIでコミュニケーションの全領域を変革─「Zoom主催リアルイベント Zoomtopia On the Road Japan」レポート
-
14年ぶりに到来したチャンスをどう活かす?企業価値向上とセキュリティ強化・運用効率化をもたらす自社だけの“ドメイン”とは
-
-
-
-
生成AIからAgentic AIへ―HCLSoftware CRO Rajiv Shesh氏に聞く、企業価値創造の課題に応える「X-D-Oフレームワーク」
-
-
-
「プラグアンドゲイン・アプローチ」がプロセス変革のゲームチェンジャー。業務プロセスの持続的な改善を後押しする「SAP Signavio」
-
BPMとプロセスマイニングで継続的なプロセス改善を行う仕組みを構築、NTTデータ イントラマートがすすめる変革のアプローチ
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-





